Diffusion-Kinetically Dormant Ni-Rich Cathode at High Potentials

Author:

Cai Jiyu1ORCID,Zhou Xinwei1,Li Tianyi2ORCID,Li Luxi1ORCID,Li Jiantao1ORCID,Sun Cheng-Jun3,Suzana Ana4,Bai Jianming4ORCID,Gudavalli Ganesh5,Zhang Tingting5,Karami Niloofar5,Chernova Natasha5,Upreti Shailesh5,Prevel Brad6,Xu Gui-Liang1ORCID,Liu Yuzi1ORCID,Xu Wenqian3ORCID,Chen Yanbin7,Song Shunlin8,Zhang Xuequan8,Wang Li9,He Xiangming9ORCID,Wang Feng1,Chen Zonghai1ORCID

Affiliation:

1. Argonne National Laboratory

2. Argonne National Laboratoy

3. X-ray Science Division, Argonne National Laboratory

4. Brookhaven National Laboratory

5. Charge CCCV (C4V)

6. Primet Precision Materials

7. Beijing Easprint Material Technology Co. Ltd.

8. Beijing Easpring Material Technology Co.

9. Tsinghua University

Abstract

Abstract High energy-density Ni-rich layered cathodes suffer a long-standing challenge of severe performance deterioration at high potentials. Besides, it is of great challenge to develop a universal mitigation strategy to address numerous deterioration causes. Herein, to probe the dominant deterioration root for guiding rational development, we perform an in-depth investigation of LiNi0.83Mn0.1Co0.07O2 in full cells with graphite anode for 1000 cycles at different state-of-charges. Intriguingly, severe capacity retention of harvest cathodes (like 54% at 4.6 V) is inconsistent with insignificant material degradation via synchrotron-based X-ray characterizations. To unpuzzle this, we deconvolute the overall performance deterioration of cycled cathode into irreversible and reversible losses. Our evaluation unveils Ni-rich cathodes are mostly alive (like 88% at 4.6 V) but kinetically inhibited in long-term cycling at high potentials. The evolution of Li+ diffusion is of greater significance than that of electrical impedance. The exacerbated cathode-electrolyte interface, mainly rock-salt phase, is speculated experimentally and analytically as the predominant root for severe chemical diffusion and performance deterioration. Our findings highlight the upmost importance of stabilizing the cathode-electrolyte interface for deploying Ni-rich cathodes at higher potentials to awaken more energy and longer lifespan.

Publisher

Research Square Platform LLC

Reference35 articles.

1. Operation of a Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective;Stroe DI;Ieee T Ind Appl,2017

2. High-nickel layered oxide cathodes for lithium-based automotive batteries;Li WD;Nature Energy,2020

3. Xu, G. L. et al. Challenges and Strategies to Advance High-Energy Nickel-Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation. Advanced Functional Materials 30, doi:ARTN 200474810.1002/adfm.202004748 (2020).

4. Anchoring Interfacial Nickel Cations on Single-Crystal LiNi0.8Co0.1Mn0.1O2 Cathode Surface via Controllable Electron Transfer;Han YK;Acs Energy Lett,2020

5. Performance and cost of materials for lithium-based rechargeable automotive batteries;Schmuch R;Nature Energy,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3