An extended energy analysis of managed forestry systems: Accounting for foregone biomass as an indicator of ecosystem impact

Author:

Dunlap Josh1,Schramski John R.1

Affiliation:

1. University of Georgia

Abstract

Abstract

Conventional energy analyses of forestry systems capture only human inputs and harvests, neglecting impacts to forest biomass stocks resulting from intensive management. This gap is addressed by extending the boundaries of forestry operations to the whole forest ecosystem. These new boundaries allow for the quantification of cumulative foregone biomass (ΔBc, the difference between accumulated potential and existing forest biomass stocks over time) under differing management scenarios to supplement the interpretation of conventional energy metrics such as net energy (NE) and the ratio of energy return to energy invested (EROI). Like existing models in the literature, our results confirm that less intensive management approaches achieve higher EROI values due to lower inputs. However, more significantly, magnitudes of ΔBc remain 1-2 orders of magnitude larger than NE over 100 years regardless of management scenario, and thus highlight an imbalance between the industrial and ecological energy dimensions of managed forests. This extended energy model begins to illustrate the overlooked role of ecological energy storage in forest management and offers insights to identify and design more sustainable management practices that can balance energy efficiency while minimizing resultant ecosystem impacts.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3