DEF6 regulates renal ischemia reperfusion injury through suppressing the WWP2 mediated ubiquitination of PARP1

Author:

Hu Haochong1,Liu Yiting1,Han Shangting1,Guo Jiayu1,Zhou Jiangqiao1,Qiu Tao1

Affiliation:

1. Renmin Hospital of Wuhan University

Abstract

Abstract

Background Renal ischemia-reperfusion injury (RIRI) stands as an unavoidable complication arising from kidney surgery, profoundly intertwined with its prognosis. The role of differentially expressed in FDCP 6 homolog (DEF6) in RIRI remains elusive, despite its confirmation as a potential therapeutic target for diverse diseases. Here, we investigated the mechanism by which DEF6 regulated RIRI. Methods RNA sequencing data and IP-MS were used to identify the expression and potential targets of DEF6 through bioinformatics analysis. To elucidate the impact of DEF6 on RIRI, both an in vivo model of RIRI in mice and an in vitro model of kidney cell hypoxia/reoxygenation were established. Biochemical and histological analyses were used to investigate the influence of DEF6 on kidney damage mediated by RIRI. Results We confirmed that DEF6 was upregulated during RIRI and had a close correlation with RIRI-related inflammation and apoptosis. Moreover, inhibition of DEF6 could mitigate RIRI-induced kidney damage, inflammation, and apoptosis. Through our comprehensive mechanistic investigation, we revealed that DEF6 interacts with poly ADP-ribose polymerase 1 (PARP1) and suppresses the ubiquitination of PARP1. Inhibition of DEF6 resulted in reduced cleaveage of PARP1, leading to a marked suppression of PARP1-mediated apoptosis activation. The aggravation effect on inflammation and apoptosis achieved through DEF6 was nullified by the inhibition of NF-κB and Bax/Bcl2 signaling activation through PARP1 deletion. Conclusions The findings from our study indicate that DEF6 suppressed the WWP2 mediated ubiquitination of PARP1 and modulates the activation of NF-κB and Bax/Bcl2 pathway, thus involved in RIRI-induced inflammation and apoptosis. These results suggest that DEF6 holds promise as a potential therapeutic target for mitigating RIRI.

Publisher

Springer Science and Business Media LLC

Reference36 articles.

1. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes [J];KAI S;Kidney Int,2011

2. MICHAEL L N. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells [J];STEPHANIE F S;Kidney Int,2019

3. Antithrombin III/SerpinC1 insufficiency exacerbates renal ischemia/reperfusion injury [J];FENG W;Kidney Int,2015

4. Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs [J];SANDOR JOHANML;Free Radic Biol Med,2013

5. Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review [J];LUIS A J, PATRICK M W KIANOUSHK;Compr Physiol,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3