1-mean and 1-medoid 2-clustering problem with arbitrary cluster sizes: Complexity and approximation

Author:

Pyatkin Artem1

Affiliation:

1. Sobolev Institute of Mathematics, Russia, Novosibirsk + Novosibirsk State University, Russia, Novosibirsk

Abstract

We consider the following 2-clustering problem. Given N points in Euclidean space, partition it into two subsets (clusters) so that the sum of squared distances between the elements of the clusters and their centers would be minimum. The center of the first cluster coincides with its centroid (mean) while the center of the second cluster should be chosen from the set of the initial points (medoid). It is known that this problem is NP-hard if the cardinalities of the clusters are given as a part of the input. In this paper we prove that the problem remains NP-hard in the case of arbitrary clusters sizes and suggest a 2-approximation polynomial-time algorithm for this problem.

Publisher

National Library of Serbia

Subject

Management Science and Operations Research

Reference22 articles.

1. A.V. Pyatkin, “NP-hardness of 1-Mean and 1-Medoid 2-Clustering Problem with Arbitrary Clusters Sizes”, in MOTOR 2021. Communications in Computer and Information Science, vol. 1476, pp. 248-256, 2021.

2. P. Berkhin, “A Survey of Clustering Data Mining Techniques”, in Kogan J., Nicholas C., Teboulle M. (eds) Grouping Multidimensional Data. Springer, Berlin, Heidelberg, 2006.

3. R. C. Dubes, and A. K. Jain, Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, New Jersey, 07632, 1988.

4. S. Ghoreyshi, and J. Hosseinkhani, “Developing a Clustering Model based on K-Means Algorithm in order to Creating Different Policies for Policyholders”, International Journal of Advanced Computer Science and Information Technology, vol. 4, no. 2, pp. 46-53, 2015.

5. W. D. Fisher, “On Grouping for Maximum Homogeneity”, Journal of the American Statistical Association, vol. 53, no. 284, pp. 789-798, 1958.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PTAS for Problems of Vector Choice and Clustering with Various Centers;Journal of Applied and Industrial Mathematics;2023-09

2. PTAS for p-Means q-Medoids r-Given Clustering Problem;Mathematical Optimization Theory and Operations Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3