The effect of the amount of Y2O3 doped to the MA6000 alloy produced by mechanical alloying method on wear behavior

Author:

Çelik Ş.1,Özyürek D.1,Tunçay T.1

Affiliation:

1. Karabuk University, Faculty of Technology, Department of Manufacturing Engineering, Karabuk, Turkey

Abstract

This paper investigated the wear performances of Y2O3 doped MA6000 (Ni-Cr-Al) alloy produced by mechanical alloying (MA). Produced, all powders were pre-formed by cold pressing and sintered in a vacuum environment. Sintered MA6000- X% Y2O3 superalloys were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) analysis, density, and hardness measurements. Wear tests of Y2O3 added MA6000 alloys were carried out in a block-on-ring type wear device. In the wear tests, the sliding speed of 1 ms-1 at room temperature (RT) was performed under five different sliding distances (200-1000 m) and three different loads (5 N, 10 N, and 15 N). As a result of the studies, it was determined that the MA-ed MA6000 superalloy powders were homogeneous and flake shape. With the increase amount of Y2O3, hardness of these superalloys increased from 267 to 431 Hv, but the density slightly decreased. Different intermetallic/carbur phases such as Ni3Al and MoC were observed in all compositions. Wear tests show that weight loss and wear rate decreased, and friction coefficient (?) increased with the increasing amount of Y2O3 additive. Besides, it was determined that as the applied load increased in the wear test, the weight loss increased, but the wear rate and friction coefficient (?) decreased.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3