Combined with the residual and multi-scale method for Chinese thermal power system record text recognition

Author:

Liu Jun1,Li Wei1,Du Zhuang1

Affiliation:

1. Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, China + School of Computer Science & Engineering, Wuhan Institute of Technology, Wuhan, China

Abstract

Aiming at the problem that the recognition accuracy based on convolutional neural network of thermal power system record text is not high, a method of thermal power system record text recognition based on residual and multi-scale feature combination was proposed and implemented. Combined with the residual, a new network is designed to replace the traditional convolutional neural network and improve the feature extraction ability of the network. The 1 ? 1 convolution core was used to increase the network depth and reduce the parameters instead of the 3 ? 3 convolution core. The network order of each layer in residual block was adjusted so that the network representation ability can be improved. Combining feature information of different scales and retaining more vertical feature information, the classification accuracy of the network is improved. Experiments on the self-built image data set of thermal power system records show that the proposed network model improves the accuracy by 11% compared with convolutional recurrent neural network, and has better robustness to image distortion and blurring.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3