Affiliation:
1. University of Belgrade, Faculty of Mathematics, Belgrade, Serbia
Abstract
In this article we prove some properties of the isometry groups of manifold
S3 ? S3, both with respect to the standard Euclidean product metric ??,??
and nearly K?hler metric 1. We also investigate the action of these
isometries on certain classes of hypersufaces of S3 ? S3.
Publisher
National Library of Serbia
Reference9 articles.
1. B. Dioos, Submanifolds of the nearly Kähler manifold S3 × S3, PhD thesis, Geometry Section, Department of Mathematics, Faculty of Science, May 2015, 168 pages, J. Van der Veken (supervisor), L. Vrancken (cosupervisor).
2. M. Djorić, Hypersurfaces of the homogeneous nearly Kähler S3 × S3 whose normal vector field is P−principal, Mediterr. J. Math. 18, 251 (2021).
3. M. Djorić, M. Djorić, M. Moruz, Geodesic lines on nearly Kähler S3 × S3, J. Math. Anal. Appl. 466 (2018), 1099-1108.
4. M. Djorić, M. Djorić, M. Moruz, Real hypersurfaces of the homogeneous nearly Kähler S3 × S3 with P-isotropic normal, J. Geom. Phys. 160 (2021).
5. M. B. Djorić, M. Djorić, Hypersurfaces of the homogeneous nearly Kähler S3 × S3 with P−principal normal vector field, submitted.