Affiliation:
1. Faculty of Electronic Engineering, Computer Department, Niš
2. Faculty of Electronic Engineering, Computer Department, Niš + Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade
3. Faculty of Mechanical Engineering, Niš
Abstract
In this paper, we present experimental data of static fractals and compare
the results with theoretical analysis obtained using dynamic particle
simulation. The fractal simulator presented in this manuscript is pioneer
work and it is the base of the future concrete and industrial applications.
We have examined sintered ceramic samples formed using several different
additives, as fabricated using various parameters, sintering temperature and
time. SEM analyses were performed on samples as a part of the experimental
characterization procedure. Based on microstructures, sets of points have
been selected as a primary database input for the theoretical-experimental
simulation to model the processes that describe the experiment. For all
grain and pore analyses, the fractal nature is recognized as a matter of
substantial influence on material characteristics. All of our experimental
and theoretical-experimental procedures are based on the construct that
reconstruction of the grain and pore fractal nature is of enormous
importance for microstructure property prognoses. The method presented here
can be used to simplify and simulate, in real time, the interaction of a few
thousand electrically charged particles possessing different masses through
formulations based on Maxwell?s electromagnetic equations. Particles in
simulation interact with alternating (or static) electromagnetic fields and
with static ceramics surface at the same time. All values are treated
numerically. The fractal simulator consists of two components, a structure
fractal generator, and field simulator. The functions for particle motion
can be implemented and changed within the program in real time. The
algorithm is written in the Delphi programming environment. The main result
of this paper describes a quite new approach in the analysis of material
microstructure properties towards programming-prognoses of the final
properties of ceramic materials using the fractal nature within the fractal
field simulator that generates structures, grains, and pores. The new
simulator algorithm is developed as the important tool for the realization
of the much ambitious project - simulation and realization of the Tesla?s
Fountain in ceramics. The concrete results will follow with this project
realization in near future.
Publisher
National Library of Serbia
Subject
Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献