Correlation between damage evolution, structural and optical properties of Xe implanted CrN thin films

Author:

Popovic Maja1ORCID,Novakovic Mirjana1ORCID,Zhang Kun2,Mitric Miodrag1,Bibic Natasa1,Rakocevic Zlatko1

Affiliation:

1. Vinča Institute of Nuclear Sciences, Belgrade

2. Georg-August-Universität Göttingen, Physikalisches Institut, Göttingen, Germany

Abstract

Polycrystalline CrN thin films were irradiated with Xe ions. The irradiation-induced modifications on structural and optical properties of the films were investigated. The CrN films were deposited on Si(100) wafers with the thickness of 280 nm, by using DC reactive sputtering. After deposition, the films were implanted at room temperature with 400 keV Xe ions with the fluences of 5-20?1015 ions/cm2. The films were then annealed at 700 ?C in vacuum for 2 h. The combination of Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) was used for structural analyses, while changes in optical properties were monitored by spectroscopic ellipsometry. We also measured the electrical resistivity of the samples using a four point probe method. RBS analysis reveals that the concentration of Xe in the layers increases with ion fluence reaching the value of around 1.5 at.% for the highest ion dose, at a depth of 73 nm. XRD patterns show that the irradiation results in the decrease of the lattice constant in the range of 0.4160-0.4124 nm. Irradiation also results in the splitting of 200 line indicating the tetragonal distortion of CrN lattice. TEM studies demonstrate that after irradiation the columnar microstructure is partially destroyed within _90 nm, introducing a large amount of damage in the CrN layers. Spectroscopic ellipsometry analysis shows that the optical band gap of CrN progressively reduces from 3.47 eV to 2.51 eV with the rise in ion fluence up to 20?1015 ions/cm2. Four point probe measurements of the films indicated that as the Xe ion fluence increases, the electrical resistivity rises from 770 to 1607 ?Wcm. After post-implantation annealing crystalline grains become larger and lattice distortion disappears, which influences optical band gap values and electrical resistivity of CrN.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3