Evaluation of maize grain yield and yield stability by AMMI analysis

Author:

Brankovic-Radojcic Dragana1,Babic Vojka1ORCID,Girek Zdenka2,Zivanovic Tomislav3,Radojĉic Aleksandar4,Filipovic Milomir1,Srdic Jelena1

Affiliation:

1. Maize Research Institute Zemun Polje, Belgrade

2. Institute for vegetable crops, Smederevska Palanka

3. Faculty of Agriculture, Belgrade

4. Chemical Agrosava, Belgrade

Abstract

Significant genotype x environment interaction for quantitative traits, such is grain yield, reduces the usefulness of genotype means, over all environments, for selecting superior genotypes. AMMI model is a valuable statistical tool in identifying systemic variation contained in the interaction effect. Obtained data could be applied in maximizing yield potential in every environment based on both narrow and wide genotype adaptability, without the necessity of developing breeding programs for smaller targeted environments. Precise assortment of superior genotypes, with the assistance of AMMI model, leads to the better recommendation of newly bred hybrids, and thus increasing maize grain yield in a targeted environment. In this research genotype x environment interaction and yield stability of 36 maize hybrids of FAO 300-700 maturity group was investigating. The trial was set according to Randomized Complete Block Design (RCBD). Data were processed in order to obtain average estimates of grain yield, and yield stability was assessed by the method of AMMI analysis. The highest average grain yield was achieved in 2011 (11.62 t/ha), and the lowest in the most stressful and dry 2012 (6.90 t/ha). In the region Loznica L2 the highest average yield was noticed (13.81 t/ha), while at L7 (Sremska Mitrovica) average grain yield was the lowest (6.97 t/ha). Results of AMMI analysis gave precise recommendation for production of maize hybrids in certain environments, by determining winning areas of hybrids H20, H11 and H36. Medium early maturing and high yielding hybrids (H11 and H20) are therefore considered more favorable for production in environments with lower precipitation, while high yielding and more stable hybrids H21 and H35 are suitable for a wider range of environments. Hybrid H36 (FAO 700) showed its full potential at L2, and L3 which did not suffer from a lack of moisture. This hybrid also expressed its best potential in environments with favorable conditions.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Plant Science,Genetics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3