Long photometric cycles in hot algols

Author:

Mennickent R.E.1

Affiliation:

1. Universidad de Concepción, Departamento de Astronomía, Casilla, Concepción, Chile

Abstract

We summarize the development of the field of Double Periodic Variables (DPVs, Mennickent et al. 2003) during the last fourteen years, placing these objects in the context of intermediate-mass close interacting binaries similar to ? Persei (Algol) and ? Lyrae (Sheliak) which are generally called Algols. DPVs show enigmatic long photometric cycles lasting on average about 33 times the orbital period, and have physical properties resembling, in some aspects, ? Lyrae. About 200 of these objects have been found in the Galaxy and the Magellanic Clouds. Light curve models and orbitally resolved spectroscopy indicate that DPVs are semi-detached interacting binaries consisting of a near main-sequence B-type star accreting matter from a cooler giant and surrounded by an optically thick disc. This disc contributes a significant fraction of the system luminosity and its luminosity is larger than expected from the phenomenon of mass accretion alone. In some systems, an optically thin disc component is observed in well developed Balmer emission lines. The optically thick disc shows bright zones up to tens percent hotter than the disc, probably indicating shocks resulting from the gas and disc stream dynamics. We conjecture that a hotspot wind might be one of the channels for a mild systemic mass loss, since evidence for jets, winds or general mass loss has been found in ? Lyrae, AUMon, HD170582, OGLE05155332-6925581 and V393 Sco. Also, theoretical work by Van Rensbergen et al. (2008) and Deschamps et al. (2013) suggests that hotspot could drive mass loss from Algols. We give special consideration to the recently published hypothesis for the long-cycle, consisting of variable mass transfer driven by a magnetic dynamo (Schleicher and Mennickent 2017). The Applegate (1992) mechanism should modify cyclically the equatorial radius of the chromospherically active donor producing cycles of enhanced mass loss through the inner Lagrangian point. Chromospheric emission in V393 Sco, an optically thicker hotspot in the high-state of HD170582 and evidence for magnetic fields in many Algols are observational facts supporting this picture. One of the open questions for this scenario is why, among the Algols showing evidence for magnetic fields, the DPV long-cycle is present only under some combinations of stellar parameters, particularly those including the B-type gainers. Other open questions are what are the descendants of these interesting binaries, how much mass contain the discs around the likely rapidly rotating gainers, and the role played by the outflows through the Lagrangian L2 and L3 points reported in a couple of systems.

Publisher

National Library of Serbia

Subject

Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3