Hyperbolic Navier-Stokes equations in three space dimensions

Author:

Abdelhedi Bouthaina1

Affiliation:

1. Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia

Abstract

We consider in this paper a hyperbolic quasilinear version of the Navier-Stokes equations in three space dimensions, obtained by using Cattaneo type law instead of a Fourier law. In our earlier work [2], we proved the global existence and uniqueness of solutions for initial data small enough in the space H4(R3)3 ? H3(R3)3. In this paper, we refine our previous result in [2], we establish the existence under a significantly lower regularity. We first prove the local existence and uniqueness of solution, for initial data in the space H5 2 +?(R3)3 ?H32 +?(R3)3, ? > 0. Under weaker smallness assumptions on the initial data and the forcing term, we prove the global existence of solutions. Finally, we show that if ? is close to 0, then the solution of the perturbed equation is close to the solution of the classical Navier-Stokes equations.

Publisher

National Library of Serbia

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3