Affiliation:
1. Mathematics Department, Truckee Meadows Community College, Reno, USA
2. Departamento de Matematica, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
Abstract
In a note at the 1928 International Congress of Mathematicians Cartan outlined how his ?method of equivalence? can provide the invariants of nonholonomic systems on a manifold ?? with kinetic lagrangians [29]. Cartan indicated which changes of the metric outside the constraint distribution ?? ? ???? preserve the nonholonomic connection ?????? = Proj?? ?????, ??,?? ? ??, where ????? is the Levi-Civita connection on ?? and Proj?? is the orthogonal projection over ??. Here we discuss this equivalence problem of nonholonomic connections for Chaplygin systems [30,31,62]. We also discuss an example-a mathematical gem!-found by Oliva and Terra [76]. It implies that there is more freedom (thus more opportunities) using a weaker equivalence, just to preserve the straightest paths: ?????? = 0. However, finding examples that are weakly but not strongly equivalent leads to an over-determined system of equations indicating that such systems should be rare. We show that the two notions coincide in the following cases: i) Rank two distributions. This implies for instance that in Cartan?s example of a sphere rolling on a plane without slipping or twisting, a (2,3,5) distribution, the two notions of equivalence coincide; ii) For a rank 3 or higher distribution, the corank of D in D+[D,D] must be at least 3 in order to find examples where the two notions of equivalence do not coincide. This rules out the possibility of finding examples on (3,5) distributions such as Chaplygin?s marble sphere. Therefore the beautiful (3,6) example by Oliva and Terra is minimal. 1.
Publisher
National Library of Serbia
Subject
Applied Mathematics,Mechanical Engineering,Computational Mechanics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献