The dissolution study of a South African magnesium-based material from different sources using a pH-stat

Author:

Limo Rutto1,Enweremadu Christopher2

Affiliation:

1. Department of Chemical Engineering, Vanderbijlpark Campus, Vaal University of Technology, Private Bag X, Vanderbijlpark, South Africa

2. Department of Mechanical Engineering, Vanderbijlpark Campus, Vaal University of Technology, Private Bag X, Vanderbijlpark, South Africa

Abstract

One of the main steps in the wet flue gas desulphurization (WFGD) process is the dissolution of either magnesite or limestone. Evaluating the magnesite dissolution rate is vital for the design and efficient operation of wet FGD plants. A study on the dissolution of magnesite from different sources in South Africa is presented in this work. The effect of reaction temperature (303.15-343.15K), solid-to-liquid ratio (0.5-2.5g/200 ml), particle size (25-125?m), pH (4-6) and HCl concentration (0.5-2.5 mol/l) on the dissolution rate was studied. It was found out that the dissolution reaction follows a shrinking-core model with the chemical reaction control as the rate-controlling step. The dissolution rate increased with an increase in concentration and reaction temperature and with a decrease in particle size and solid-to-liquid ratio. The activation energy of this dissolution process was found to be 45.685 kJ/mol.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3