Fast edge-preserving gravity-like image interpolation

Author:

Lukac Zeljko1,Ocovaj Stanislav1,Samardzija Dragan2ORCID,Temerinac Miodrag3

Affiliation:

1. RT-RK Institute for Computer Based Systems, Novi Sad + Faculty of Technical Sciences, Novi Sad

2. Nokia Bell Labs, Crawfords Corner Road, Holmdel, New Jersey, USA + Faculty of Technical Sciences, Novi Sad

3. Faculty of Technical Sciences, Novi Sad

Abstract

In this paper we propose a novel image interpolation algorithm which preserves edges and keeps a natural texture of interpolated images. The algorithm is based on an idea that only pixels that belong to the same side of an edge should be used in interpolation of pixels that belong to an edge. Beside similarity-based separation of known interpolation pixels a gravity-like interpolation coefficient set is also introduced in order to support different number of interpolation pixels and their location in two dimensional plane. The algorithm also applies arbitrary scaling factors, thus offering a broader scope of applications. Use of a local set of interpolating points makes the proposed algorithm suitable for applications on resource-limited platforms. The edge performance is demonstrated for structured geometric forms, while a general interpolated image quality is evaluated using objective measures and subjective comparisons. A comparison with some relevant interpolation algorithms shows the desirable tradeoff between image quality (sharpness and texture) and requested computing power (run-time).

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3