Numerical study on the naturally captured air volume of outside cabin heat exchanger for wind power generation

Author:

Zhou Nianyong1,Guo Yixing1,Liu Wenbo1,Feng Hao1,Peng Haoping1,Lei Yun1,Deng Song1,Zhao Lei2

Affiliation:

1. School of Petroleum Engineering, Changzhou University, Changzhou, Jiangsu, China

2. Avic Xinxiang Aviation industry (Group) Co., LTD, Xinxiang, Henan, China

Abstract

In this paper, the outside cabin heat exchanger based on the porous media approach was established. The effects of altitude, viscous resistance coefficient, inertial resistance coefficient, and core thickness on the naturally captured air volume of the heat exchanger were investigated by numerical simulation. Results showed that the naturally captured air volume of the heat exchanger tends to be larger on both sides and smaller in the middle, and there is a quasi-linear increase proportional to the incoming wind velocity. With the increment of altitude, viscous resistance coefficient, and inertial resistance coefficient, the average naturally captured air volume of the heat exchangers shows a downward trend. The trend would be clear with the increment of the incoming wind velocity, nevertheless, the effect of core thickness is weak. In addition, the design values of the viscous resistance coefficient and the inertial resistance coefficient should be restricted in the order of 106 and below 500, respectively. Based on the weak effect of the naturally captured air volume of the heat exchanger, the thickness of the core can be appropriately increased to ensure the heat transfer area of the heat exchanger.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3