High-temperature oxidation behaviour of si3n4 nanowires with different diameters

Author:

Zhao Shuang1,Yang Feiyue1,Chen Jun1,Li Kunfeng1,Fei Zhifang1,Yang Zichun1

Affiliation:

1. School of Power Engineering, Naval University of Engineering, Wuhan, China

Abstract

?-Si3N4 nanowires with diameters of 100-180 nm (Si3N4-W1) and 420-510 nm (Si3N4-W2) were synthesized by a modified chemical vapour deposition (CVD) method and their microstructure changes after high-temperature oxidation were studied. The results showed that both Si3N4 nanowires were not significantly oxidized when the temperature was lower than 900?C. However, the Si3N4-W1 microstructure began to change significantly after oxidation at 1200?C, while the Si3N4-W2 microstructure remained almost unchanged. Moreover, the Si3N4- W1 and Si3N4-W2 nanowires oxidized significantly after treatment at 1400?C, with weight gain of 26.4% and 13.7%, respectively.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3