Investigating close binary supermassive black holes at high angular resolution

Author:

Kovacevic A.1ORCID

Affiliation:

1. Department of Astronomy, Faculty of Mathematics, University of Belgrade, Belgrade, Serbia + Fellow of Chinese Academy of Sciences President`s International Fellowship Initiative (PIFI) for visiting scientist

Abstract

Gravitational waves (GW) in the nano-Hz domain are expected to be radiated by close-binaries of supermassive black holes (CB-SMBHs; components bound in a Keplerian binary at mutual distance less than ~ 0.1 pc), which are relicts of galaxy mergers and anticipated to be measured via the Pulsar Timing Array (PTA) technique. The challenge of present CB-SMBH investigations is that their signatures are elusive and not easily disentangled from a single SMBH. PTAs will typically have a glimpse of an early portion of the binary inspiral to catch the frequency evolution of the binary only with sufficiently high mass and initially high eccentricity. Thus, we have to make use of electromagnetic observations to determine orbital parameters of CB-SMBHs and test nano-Hz GW properties. The 2D reverberation mapping (RM) is a powerful tool for probing kinematics and geometry of ionized gas in the SMBHs (single or binary) vicinity, yet it can lose information due to projection on the line of sight of the observer. Nevertheless, spectroastrometry with AMBER, GRAVITY, and successors can provide an independent measurement of the emitting region's size, geometry, and kinematics. These two techniques combined can resolve CB-SMBHs. In this review, we focus on RM and spectroastrometry observational signatures of CB-SMBHs with non-zero eccentricity from recent simulations with particular attention to recent developments and open issues.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3