Transformation, evaluation of GTGene and multivariate genetic analysis for morpho-physiological and yield attributing traits in Zea mays

Author:

Aaliya Khadija1,Qamar Zahida1,Ahmad Nasir1,Ali Qurban1,Munim Farooq1,Husnain Tayyab1

Affiliation:

1. University of the Punjab Lahore, Centre of Excellence in Molecular Biology, Lahore, Pakistan

Abstract

Maize is the 3rd major crop grown all over the world that fulfills the needs of millions of people. Various biotic and abiotic factors caused reduction in grain yield of maize, among them weeds show most adverse effects. Objective of this study was to develop glyphosate resistance maize for developing maize hybrids and synthetic varieties with high grain and fodder yield potential. Glyphosate is a broad spectrum herbicide and resistance of crop against the herbicide, allows post emergence application, which otherwise is impossible. Higher GTG crude protein (479.94?g/g) was recorded for CIL 194-975 plant. The plant CIL 194-1786 showed higher expression level of GTG protein, indicated that transformation efficiency was better for line CIL-194 than CIL-123. GTGene stably integrated to the genome of the maize lines CIL-194 and CIL-123, these transformed lines showed more ability to cope with herbicides as compared with non-transformed lines in greenhouse and field trials. The transgenic lines were sown in field and data was recorded for various morpho-physiological, grain, fodder yield and quality traits. Data was statistically analyzed to check significance of results at <0.05% probability level. It was concluded from heritability, genetic advance, stepwise multiple linear regression, principle component and factor analysis that the selection on the basis of grain yield, green fodder yield, stem diameter, cob weight, stomata conductance, chlorophyll contents, photosynthetic rate, cob length, grain protein, grain oil, embryo percentage and grain starch may be fruitful keeping in view as the major contributing traits to improve crop yield and production. It was suggested that the transgenic lines for glyphosate resistance may be used to develop transgenic hybrids and synthetic varieties with higher grain yield with high quality.

Publisher

National Library of Serbia

Subject

Plant Science,Genetics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. REVOLUTIONIZING PLANT BREEDING PROGRAMS WITH ADVANCEMENTS IN MOLECULAR MARKER-ASSISTED SELECTION;Bulletin of Biological and Allied Sciences Research;2024-01-04

2. Selection of popcorn genotypes resistant to Spodoptera frugiperda and identification of resistance-related key traits;ACTA SCI-AGRON;2024

3. TRAIT CORRELATIONS AND IMPLICATIONS FOR YIELD POTENTIAL IN COTTON: A COMPREHENSIVE STUDY;Biological and Agricultural Sciences Research Journal;2023-08-11

4. ASSESSMENT OF MORPHOLOGICAL TRAITS IN TOMATO HYBRIDS FOR IMPROVED CULTIVATION PRACTICES;Biological and Agricultural Sciences Research Journal;2023-05-25

5. Organic cotton and BCI-certified cotton fibres;Sustainable Fibres for Fashion and Textile Manufacturing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3