Affiliation:
1. Department of Mathematics, Aligarh Muslim University, Aligarh, India
Abstract
The objective of this paper is to introduce the notion of skew Lie
centralizers in *-rings, and to investigate the structure of skew Lie
centralizers and strong skew commutativity preserving maps in prime *-rings
without assuming the existence of a symmetric idempotent and the unital
element. As an application, we shall characterize such maps in different
operator algebras.
Publisher
National Library of Serbia
Reference26 articles.
1. A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder, A characterization of Jordan left *-centralizers via skew Lie and Jordan products, Bull. Iranian Math. Soc. 48(5) (2022), 2765-2778.
2. Z. Bai, S. Du, Maps preserving products xy − yx* on von Neumann algebras, J. Math. Anal. Appl. 386(1) (2012), 103-109.
3. K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with generalized identities, Pure and Applied Math., Dekker, New York, 1996.
4. M. Bresar, M. A. Chebotar, W. S. Martindale III, Functional Identities, Frontiers in Mathematics (Birkhauser-Verlag, Basel), 2007.
5. J. Cui, C. K. Li, Maps preserving product xy − yx* on factor von Neumann algebras, Linear Algebra Appl. 431(5-7) (2009),833-842