Initiation and development of exothermic reactions during solid-phase synthesis under explosive loading

Author:

Tolkachev Vladimir1,Ivanova Oksana2,Zelepugin Sergey3

Affiliation:

1. National Research Tomsk State University, Tomsk, Russia

2. Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia

3. National Research Tomsk State University, Tomsk, Russia + Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia

Abstract

The previous numerical and experimental studies of the solid-phase synthesis of porous reactive mixtures (Al-S and Al-Tf) placed into cylindrical ampoules subjected to explosive detonation revealed the sharp increase in temperatures and pressures. The results have shown that high heat release and high increase in pressure due to exothermic reactions in the mixture, on the one hand, promote the faster development of reactions and, on the other hand, contribute to the formation of a gas phase that, in turns, may lead to the damage or even fracture of ampoules. This problem is solved by adding an inert porous aluminum layer to the bottom part of the mixture. Computations are carried out using the model of a multicomponent medium and the finite element method. Numerical simulation has shown that in this case the fracture of cylindrical ampoules is not observed.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3