Absorption profile of laser impulse of composites based on transparent matrix and metal nanoparticles

Author:

Nikitin Andrey1,Zvekov Alexander1,Kalenskii Alexander2,Ananeva Marina2,Nurmukhametov Denis1

Affiliation:

1. Federal Research Center of Coal and Coal Chemistry, Siberian Brunch of Russian Academy of Science, Kemerovo, Russia

2. Kemerovo State University, Kemerovo, Russia

Abstract

In this work the technique of modeling of optoacoustic signal initiated by laser pulse in composites based on transparent matrix and metal nanoparticles was proposed. It was shown that the time to achieve mechanical equilibrium is significantly lower than the pulse duration, and pressure is proportional to the augmentation of the nanoparticles? temperature. Testing of the modeling technique was carried out on the example of PETN - aluminum nanoparticles composite in two variant with and without taking into account the temperature dependence of the composites? optical properties. Comparison of calculated and experimental dependences of the effective absorption coefficient on the energy density of neodymium laser with pulse duration 14 ns was made. The modeling results are in good agreement with the experimental data only if the temperature dependence of the optical properties is taken into account.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3