Thermal-mechanical behavior of sandwich panels with closed-cell foam core under intensive laser irradiation

Author:

Li Zhi-Qiang1,Song Wei-Dong2,Tang Hui-Ping3,Wang Zhi-Hua1,Zhao Long-Mao4

Affiliation:

1. Taiyuan University of Technology, Institute of Applied Mechanics and Biomedical Engineering, Taiyuan, China + Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China

2. Beijing Institute of Technology, State Key Laboratory of Explosion Science and Technology, Beijing, China

3. Northwest Institute for Nonferrous Metal Research, State Key Laboratory of Porous Metal Materials, Xi’an, China

4. Taiyuan University of Technology, Institute of Applied Mechanics and Biomedical Engineering, Taiyuan, China

Abstract

Temperature field and thermal deformation of sandwich panels with closed-cell aluminum alloy foam core and heat-protective layer, which are subjected to Gaussian laser beam intensively irradiating, are investigated numerically. In transient heat analysis models, the influence of thermal conductivity, specific heat, and thickness of heat-protective layer on the temperature rise of the sandwich panels is calculated. In stress analysis models, a sequence coupled numerical method is utilized to simulate the thermal stress and deformation of sandwich panels induced by thermal expansion. Simulation results indicate that the temperature at center of sandwich panel increases firstly and then drops gradually with the increase of thermal conductivity of heat-protective layer after laser irradiation, and the critical thermal conductivity is obtained, while it decreases with the increase of specific heat and thickness of heat-protective layer. The thermal stress verifies the ?Cyclo-hoop effect?, i. e. radial stress is compression stress in ?hot zone? and tension stress in ?cold zone?. The max thermal deformation of sandwich panels slightly increases with the increase of thickness of heat-protective layer for given specific heat and thermal conductivity.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3