An analytical study of the effects of vaporization of twodimensional laminar droplets on a triple flame

Author:

Bidabadi Mehdi1,Barari Ghazal1,Azimi Milad1

Affiliation:

1. Combustion Research Laboratory, Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

The structure of triple flame propagation in combustion systems, containing uniformly distributed volatile fuel droplet was analyzed. The analysis was established for a one-step irreversible reaction with an asymptotic limit, where the value of the Zeldovich Number is large. Here, using unit Lewis number, the analytical results for the triple flame temperature were obtained considering two sections. In the first section, a non-vaporizing fuel stream was studied and in the second section, a volatile droplet fuel stream was taken into account. It is presumed that the fuel droplets vaporize to yield a gaseous fuel of known chemical structure, which is subsequently oxidized in the gaseous phase. Here two different cases are studied. In the first case, only the velocity parallel to the reactant flow was considered; while for the latter one, the vertical velocity was considered in addition. The energy equations were solved and the temperature field equations are presented. The results are first presented for a non-vaporizing fuel and compared to the experiment results. In addition, some other results of the temperature field for a vaporizing fuel stream are demonstrated within the comparison between the abovementioned cases which revealed the effect of the considering the vertical velocity component on the flame temperature field.

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3