A flash-aware buffering scheme with the on-the-fly redo for efficient data management in flash storage

Author:

Jeong Kyosung1,Lim Sungchae2,Lee Kichun3,Kim Sang-Wook1

Affiliation:

1. Hanyang University, Dept. of Computer and Software, Korea

2. Dongduk Women’s University, Dept. of Computer Science, Korea

3. Hanyang University, Dept. of Industrial Engineering, Korea

Abstract

Thanks to remarkably fast random reads and rapidly decreasing prices per bit, flash storage has been regarded as a promising alternative to traditional hard disk drives (HDDs). Although flash storage has many distinguished hardware features, it still suffers from the poor I/O performance in the case of update operations. Due to the absence of in-place updates, differently from HDDs, flash storage needs to modify data through out-of-place updates. For this reason, it is required to continuously renew the mapping information between a logical page address and its new physical address, invalidating its old physical address. When the invalidated pages swallow most of free space in flash storage, the actions of garbage reclamation are needed. Since the actions of garbage reclamation are very costly, it is crucial to reduce the number of update operations for the use of flash storage in enterprise-scale database systems. In this light, we propose a new buffering scheme that evicts dirty pages without writing them to storage, thereby reducing the amount of update operations considerably. That is, our buffering scheme enables the flushing-less evictions of dirty pages. To correctly read a page undergoing its flushing-less eviction, we propose a new on-the-fly redo mechanism that enables restoring the lost updates of the page in normal database processing. For fast execution of the on-the-fly redo, we maintain memory-resident log data of a reasonable size. To show the performance advantages of the proposed scheme, we performed extensive experiments based on the TPC-C benchmark, by running them on the open-sourced Berkeley DB equipped with/without our scheme. The results show that our scheme yields a much better performance by reducing the amount of page updates significantly.

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3