Orthogonality of quasi-orthogonal polynomials

Author:

Bracciali Cleonice1,Marcellán Francisco1,Varma Serhan1

Affiliation:

1. nema

Abstract

A result of P?lya states that every sequence of quadrature formulas Qn(f) with n nodes and positive Cotes numbers converges to the integral I(f) of a continuous function f provided Qn(f) = I(f) for a space of algebraic polynomials of certain degree that depends on n. The classical case when the algebraic degree of precision is the highest possible is well-known and the quadrature formulas are the Gaussian ones whose nodes coincide with the zeros of the corresponding orthogonal polynomials and the Cotes (Christoffel) numbers are expressed in terms of the so-called kernel polynomials. In many cases it is reasonable to relax the requirement for the highest possible degree of precision in order to gain the possibility to either approximate integrals of more specific continuous functions that contain a polynomial factor or to include additional fixed nodes. The construction of such quadrature processes is related to quasi-orthogonal polynomials. Given a sequence {Pn}n?0 of monic orthogonal polynomials and a fixed integer k, we establish necessary and sufficient conditions so that the quasi-orthogonal polynomials {Qn}n?0 defined by Qn(x) = Pn(x) + ?k-1,i=1 bi,nPn-i(x), n ? 0, with bi,n ? R, and bk-1,n ? 0 for n ? k-1, also constitute a sequence of orthogonal polynomials. Therefore we solve the inverse problem for linearly related orthogonal polynomials. The characterization turns out to be equivalent to some nice recurrence formulas for the coefficients bi,n. We employ these results to establish explicit relations between various types of quadrature rules from the above relations. A number of illustrative examples are provided.

Publisher

National Library of Serbia

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3