Rule based strategies for large extensive-form games: A specification language for No-Limit Texas Hold’em agents

Author:

Teófilo Luís1,Reis Luís2,Cardoso Henrique3,Mendes Pedro4

Affiliation:

1. LIACC - Artificial Intelligence and Computer Science Lab. R. Campo Alegre, Porto, Portugal + FEUP-Faculty of Engineering, University of Porto - DEI Rua Dr. Roberto Frias, Porto, Portugal

2. LIACC - Artificial Intelligence and Computer Science Lab. R. Campo Alegre, Porto, Portugal + EEUM-School of Engineering, University of Minho - DSI Campus de Azurém, Guimarães, Portugal

3. LIACC - Artificial Intelligence and Computer Science Lab. R. Campo Alegre, Porto, Portugal+FEUP - Faculty of Engineering, University of Porto - DEI Rua Dr. Roberto Frias, Porto, Portugal

4. FEUP-Faculty of Engineering, University of Porto - DEI Rua Dr. Roberto Frias, Porto, Portugal

Abstract

Poker is used to measure progresses in extensive-form games research due to its unique characteristics: it is a game where playing agents have to deal with incomplete information and stochastic scenarios and a large number of decision points. The development of Poker agents has seen significant advances in one-on-one matches but there are still no consistent results in multiplayer and in games against human experts. In order to allow for experts to aid the improvement of the agents? performance, we have created a high-level strategy specification language. To support strategy definition, we have also developed an intuitive graphical tool. Additionally, we have also created a strategy inferring system, based on a dynamically weighted Euclidean distance. This approach was validated through the creation of simple agents and by successfully inferring strategies from 10 human players. The created agents were able to beat previously developed mid-level agents by a good profit margin.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3