Effect of surface micromorphology and hydrophobicity on condensation efficiency of droplets using the lattice Boltzmann method

Author:

Liu Lijun1,Liang Gaojie2,Zhao Haiqian2,Liu Xiaoyan2

Affiliation:

1. School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China + School of Civil Engineering and Architecture, Northeast Petroleum University, Daqing, Heilongjiang, China

2. School of Civil Engineering and Architecture, Northeast Petroleum University, Daqing, Heilongjiang, China

Abstract

In the present study, the effects of the surface morphology and surface hydrophobicity on droplet dynamics and condensation efficiency are investigated using the lattice Boltzmann method (LBM). Different surface morphologies may have different condensation heat transfer efficiencies, resulting in diverse condensation rates under the same conditions. The obtained results show that among the studied morphologies, the highest condensation rate can be achieved for conical microstructures followed by the triangle microstructure, and the columnar microstructure has the lowest condensation rate. Moreover, it is found that when the surface microstructure spacing is smaller and the surface microstructure is denser, the condensation heat transfer between the surface structure and water vapor facilitates, thereby increasing the condensation efficiency of droplets. Furthermore, the condensation process of droplets is associated with the surface hydrophobicity. The more hydrophobic the surface, the more difficult the condensation heat transfer and the longer the required time for droplet nucleation. Meanwhile, a more hydrophobic surface means that it is harder for droplets to gather and merge, and the corresponding droplet condensation rate is also lower.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3