The influence of flow passage geometry on the performances of a supercritical CO2 centrifugal compressor

Author:

Shi Dong-Bo1,Wang Yu-Qi2,Xie Yong-Hui1,Zhang Di2

Affiliation:

1. Xi’an Jiaotong University, Shaanxi Engineering Laboratory of Turbomachinery and Power Equipment, School of Energy and Power Engineering, Xi’an, China

2. Xi’an Jiaotong University, MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an, China

Abstract

In this paper, based on the thermodynamic design of the supercritical carbon dioxide (sCO2) centrifugal compressor, the design idea of the flow passage geometries and the method to improve the performance of the sCO2 centrifugal compressor are discussed. With the help of commercial software ANSYS CFX, the influence of the shape of the leading edge and trailing edge is studied, and the elliptical leading edge makes the pressure ratio 10.30% higher and the efficiency 3.95% higher than the square leading edge. By changing the forward-swept angle and backward-swept angle of the leading edge, the effects of aerodynamic swept shape in sCO2 centrifugal compressor are discussed. The effect of the gap between the impeller blade and diffuser blade is discussed, and the 10 mm gap makes the performance best. The pressure ratio is increased by 2.5% compared with the original design, while at the same time the efficiency is slightly improved. In summary, based on thermal design of the sCO2 centrifugal compressor, the effects of different flow geometries are analyzed in detail.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3