Experimental and numerical simulation on buried hot fuel oil pipelines in three modes flow regime considering temperature loss during a shutdown

Author:

Dehdarinejad Mohsen1,Behbahani-Nejad Morteza2,Hajidavalloo Ebrahim1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2. Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran + Gas Networks Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Aiming to study the temperature distribution along buried pipelines containing hot fuel oil, a new large-scale laboratory is constructed from the perspective of the corresponding fluid thermophysical properties. Also, a modeling of the pipe-line, and the soil around it, was performed along the pipeline for observation of all three modes of turbulent, laminarization, and laminar flow, which is validated by experimental results. Furthermore, the appropriate data are also gathered from the actual pipeline, 107 km of the 26? pipeline between Abadan Refinery and Mahshahr Port, and the results of the experiment and modeling are reconfirmed. The experiment shows that the viscosity and fluid density of fuel oil is strongly temperature-dependent. Many experiments are performed on the parameters affected by temperature according to their importance. The method chosen to simulate three flow modes along the pipeline shows less than 2% error in turbulent and laminar zones and reveals just a 3% error to experimental data in the laminar region. The maximum safe time during the stopping period of the pipe-line and holding fuel oil in it is calculated based on the pour point of fuel oil. This time is critical for the real pipeline in sudden shutdown and is calculated 41 hours.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3