Influence of alumina addition on structural and catalytic properties of sulphated zirconia in isomerization of n-hexane

Author:

Zarubica Aleksandra1,Krstic Jugoslav2ORCID,Popovic Dejan3,Krstic Aleksandra1,Ljupkovic Radomir1ORCID,Randjelovic Marjan1,Matovic Branko4ORCID

Affiliation:

1. Faculty of Science and Mathematics, University of Niš, Niš, Serbia

2. Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

3. Faculty of Medicine, University of Niš, Niš, Serbia

4. Institute of Nuclear Science Vinča, University of Belgrade, Belgrade, Serbia

Abstract

New binary catalytic systems based on sulphated zirconia-alumina were synthesized by controlled hydrolysis of alkoxides using relative molar ratios of constituents 1:1, 1:2 and 1:3 in favour of zirconia. The obtained differences in the final catalytic material?s properties may be related to organic precursor memory effect, the applied calcinations temperatures and used alumina contents. The addition of alumina to zirconia affected the structural and surface properties stabilizing bare zirconia by means of slower phase transformation of tetragonal zirconia crystal phase into monoclinic one, further resulting in smaller crystallites sizes and higher surface density of acidic function (sulphates). The best alumina impact on physico-chemical properties was achieved when the highest amount of alumina (e.g. 50%) and lower calcination temperature (500?C) were used, causing relatively high steady-state activity in isomerization of n-hexane at reaction temperature 250 ?C. On the other hand, higher calcination temperature (600 ?C) played a role in the genesis of greater sulphate density. Catalytic activity and selectivity are expressed as a complex synergistic function of relative density of acid sites together with positive status of other optimized physico-chemical properties of the catalytic material (by activation and calcination temperatures).

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3