Application of performance dynamic equationin numerical simulation and optimization of waste heat utilization and storage system

Author:

Li Feng1

Affiliation:

1. Yellow River Conservancy Technical Institute, Kaifeng, Henan, China

Abstract

In order to improve the current situation of double energy loss in waste heat recovery and utilization, according to the factors such as phase change temperature, thermal conductivity, phase change latent heat, economy, and safety of thermal storage materials, 70# phase change thermal storage balls produced by XX company were selected as phase change thermal storage materials, and differential scanning calorimetry was used to test and analyze them, and the melting point, freezing point and phase change latent heat value of PCM were obtained, provide data reference for simulation in the following text. The shell and tube heat exchanger is selected as the core component of the mobile heat storage system, and its heat storage and release processes are simulated using FLUENT software. The results show that when the heat transfer equipment is charged for 7 hours, almost all of the inner-heat exchangers have completed the heat supply, and only the phase change products at both sides and bottom of the heat supply have ?dead zone?, which is the major effect of heat storage. In order to improve the heat storage and release rate and break the ?bottleneck? of heat storage, the heat transfer was strengthened by changing the diameter size, arrangement, and adding fins of the heat exchange tube. The effects of straight fins, T-shaped fins, as well as the number, height, thickness, and width of fins on the heat storage performance were explored. The results indicate that, adding fins cannot only improve heat transfer efficiency, but also inhibit natural-convection. The heat storage and release time decreases to varying degrees with the increase of fin width, thickness, height, and the number of circumferential fins in a single heat exchange tube.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3