Adsorption and removal of bisphenol A from aqueous solution by p-phenylenediamine modified magnetic graphene oxide

Author:

Tang Xiaosheng1,Tang Ping2,Si Shihui3,Liu Liangliang4

Affiliation:

1. Hubei Normal University, Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization & College of Life Sciences, Huangshi, Hubei, China

2. Hubei Polytechnic University, School of Environmental Science and Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Huangshi, Hubei, China

3. Central South University, College of Chemistry and Chemical Engineering, Changsha, Hunan, China

4. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha , China

Abstract

p-Phenylenediamine functionalized magnetic graphene oxide nanocomposites (PPD-MGO) were prepared and utilized in the adsorption and removal of bisphenol A in aqueous solution. The novel nanomaterials were characterized by transmission electron microscopy (TEM), Fourier infrared spectrometry (FT-IR) and vibrating sample magnetometer (VSM). The factors affected the adsorption of bisphenol A including adsorption time, temperature and pH of solution, adsorption kinetics and isotherms were all investigated. The results showed that PPD-MGO nanomaterial exhibited good adsorption ability for bisphenol A and good resuability. The maximum adsorption capacity reached 155.0 mg g-1 at 45?C and pH 7. The removal rate was 99.2 % after three times of adsorption with new nanomaterials. After five cycles adsorption, the adsorption capacity of PPD-MGO remained at 94.0 %. The adsorption of bisphenol A was found that fitted pseudo second order kinetics equations and the Freundlich adsorption model. The experimental results showed the PPD-MGO nanomaterial had a good adsorption ability to remove organic compounds in aqueous solution.

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3