Simulation and experimental study of buried natural gas pipeline leak detection based on sound source characteristics

Author:

Lin Ting1,Wang Zhichi2,Hu Bin3,Ji Yubo4,Liang Xiaoyu1

Affiliation:

1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, China

2. Hangzhou Qianjiang Gas Co., Ltd., Hangzhou, China

3. China Special Equipment Inspection & Research Institute, Beijing, China

4. Ningbo China Resources Xingguang Gas Co., Ltd., Ningbo, China

Abstract

Buried pipeline leakage will affect the thermal characteristics of the soil environment, leading to a poor soil environment. In addition, leakage of natural gas possibly produces an explosion and subsequent fire, which has fatal harm. Sustainable detection of underground gas pipeline leaks is a significant part of current research. In this study, a method for leak detection of buried natural gas PE pipelines based on sound source characteristics is investigated. The simulation software was applied in analyzing the variation of leakage rate and sound source in buried pipes under different leakage conditions including mainly different leakage apertures and pipe pressures. Also, an experiment platform was built to verify the simulation results. These results can provide help for gas pipeline leakage detection and safety protection.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3