Mechanical properties of biomass-derived silica nanoparticles reinforced PMMA composite material

Author:

Vuksanovic Marija1ORCID,Mladenovic Ivana2ORCID,Tomic Natasa3ORCID,Petrovic Milos4ORCID,Radojevic Vesna4ORCID,Marinkovic Aleksandar4ORCID,Jancic-Heinemann Radmila4ORCID

Affiliation:

1. University of Belgrade, Department of Chemical Dynamics and Permanent Education, „VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, Belgrade, Serbia

2. University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia

3. Innovation Centre of Faculty of Technology and Metallurgy in Belgrade, Belgrade, Serbia

4. University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Abstract

Rice husk was used to produce silica particles, which were then used to reinforce the polymer matrix. The synthesized SiO2 particles were characterized using X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. In a PMMA matrix, prepared SiO2 particles in amounts of 1, 3, and 5 wt.% were used as reinforcing agents. The goal of this research was to see if SiO2 particles had any effect on the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope (FE-SEM). Vickers microindentation hardness and impact testing were used to determine the mechanical properties of the obtained composites. The indentation creep?s behavior of a polymethylmetacrylate (PMMA) composite material with varying amounts of nanoparticles (SiO2) was investigated and analyzed.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3