Comparison of the structural and photo-catalytic properties of nanostructured Fe3O4/TiO2 core-shell composites synthesized by ultrasonic and Stöber methods

Author:

Parast Faezeh1,Montazeri-Pour Mehdi2,Rajabi Masoud1,Bavarsiha Fatemeh1

Affiliation:

1. Department of Materials Science and Engineering, Faculty of Technology and Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran

2. Department of Chemical and Materials Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Abstract

In the present research, Fe3O4/TiO2 magnetic photo-catalytic nanocomposites with a core/shell structure were successfully synthesized using two techniques of ultrasonic and St?ber. In this way, iron oxide (II, III) nanoparticles as soft magnetic cores of this composite were prepared by utilizing a chemical method assisted by ultrasound with a Fe+3/Fe+2 molar ratio of 1.5 under the nitrogen atmosphere. Thereafter, titanium oxide coating was performed on Fe3O4 nanoparticles by using tetrabutyl orthotitanate (TBOT) and titanium isopropoxide (TTIP) precursors. The resultant nanostructures were characterized by means of X-ray powder diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, energy dispersive X-ray (EDX) analysis, vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Through findings obtained from TEM examinations, the formation of core/shell nanostructure was confirmed in the prepared Fe3O4/TiO2 composites. Analysis of magnetic properties revealed that titanium oxide coating on iron oxide nanoparticles reduces saturation magnetization (Ms). The values of saturation magnetization for Fe3O4 powder and Fe3O4/TiO2 nanocomposite powders achieved via ultrasonic and St?ber methods were 60, 23 and 9 emu/g, respectively. Photo-catalytic properties of Fe3O4/TiO2 nanostructures were evaluated by the use of methylene blue dye under UV light. Results indicated that Fe3O4/TiO2 composite obtained by the St?ber method has a better photo-catalytic property as well as a decreased but acceptable magnetic separation. Degradation of methylene blue dye in the presence of photo-catalytic powder prepared by ultrasonic and St?ber procedures was 61 and 69 %, respectively, within 90 minutes of UV light exposure.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3