The spectral radiative effect of Si/SiO2 substrate on monolayer aluminum porous microstructure

Author:

Yu Haiyan1,Zhang Haochun1,Su Chengshuai1,Wang Kexin1,Jin Liang1

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China

Abstract

In this work, we have investigated theoretically the spectral radiative properties of a monolayer aluminum porous microstructure, including wavelength-selective transmission, reflection, and absorption. The finite-difference time-domain method for electromagnetics has been used to calculate the spectral radiative properties of the monolayer aluminum porous microstructure. It is found that the absorption spectra of the aluminum porous microstructure will generate two peaks within the wavelength ranging from 1.0 to 15.0 mm at normal incidence of light. Then the surface plasma polarition resonance could be observed clearly in the obtained results of this work, especially on the top surface near the orifice. Inside the porous structure, magnetic polariton is the crucial mechanism to elucidate for the power absorption enhancement. Furthermore, the absorption capacity of the aluminum porous structure with Si/SiO2 substrate has been analyzed, to explain the influence of base on the monolayer porous material. The findings indicate that the absorptance peak at 3 mm incident wavelength significantly improved with silicon substrate, while that of silica substrate has little difference with aluminum porous plate. The silicon and silica bases disrupted the distribution of the electromagnetic fields of the original aluminum porous structure, and form a new magnetic field within the subbases. Meanwhile the internal microcavity polarition of the porous structure has enhanced obviously near the bases.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3