Optimal airfoil design and wing analysis for solar-powered high-altitude platform station

Author:

Hasan Mohammad1,Svorcan Jelena1ORCID,Simonovic Aleksandar1,Mirkov Nikola2ORCID,Kostic Olivera1ORCID

Affiliation:

1. University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

2. University of Belgrade, "VINČA" Institute of Nuclear Sciences − National Institute of the Republic of Serbia, Belgrade, Serbia

Abstract

The ability of flying continuously over prolonged periods of time has become target of numerous research studies performed in recent years in both the fields of civil aviation and unmanned drones. High-altitude platform stations are aircrafts that can operate for an extended period of time at altitudes 17 km above sea level and higher. The aim of this paper is to design and optimize a wing for such platforms and computationally investigate its aerodynamic performance. For that purpose, two-objective genetic algorithm, class shape transformation and panel method were combined and used to define different airfoils with the highest lift-to-drag ratio and maximal lift coefficient. Once the most suitable airfoil was chosen, polyhedral half-wing was modeled and its aerodynamic performances were estimated using the computational fluid dynamics approach. Flow simulations of transitional flow at various angles-of-attack were realized in ANSYS FLUENT and various quantitative and qualitative results are presented, such as aerodynamic coefficient curves and flow visualizations. In the end, daily mission of the aircraft is simulated and its energy requirement is estimated. In order to be able to cruise above Serbia in July, an aircraft weighing 150 kg must accumulate 17 kWh of solar energy per day.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3