Excess heat utilization combined with thermal storage integration in district heating systems using renewables

Author:

Doracic Borna1,Grozdek Marino1,Puksec Tomislav1,Duic Neven1

Affiliation:

1. University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia

Abstract

District heating systems already play an important role in increasing the sustainability of the heating sector and decreasing its environmental impact. However, a high share of these systems is old and inefficient and therefore needs to change towards the 4th generation district heating, which will incorporate various energy sources, including renewables and excess heat of different origins. Especially excess heat from industrial and service sector facilities is an interesting source since its potential has already been proven to be highly significant, with some researches showing that it could cover the heat demand of the entire residential and service sector in Europe. However, most analyses of its utilisation in district heating are not done on the hourly level, therefore not taking into account the variability of its availability. For that reason, the main goal of this work was to analyse the integration of industrial excess heat into the district heating system consisting of different configurations, including the zero fuel cost technologies like solar thermal. Furthermore, cogeneration units were a part of every simulated configuration, providing the link to the power sector. Excess heat was shown to decrease the operation of peak load boiler and cogeneration, that way decreasing the costs and environmental effect of the system. However, since its hourly availability differs from the heat demand, thermal storage needs to be implemented in order to increase the utilisation of this source. The analysis was performed on the hourly level in the energyPRO software

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3