Abstract
The space debris population is similar to the asteroid belt, since it is subject to a process of high-velocity mutual collisions that affects the long-term evolution of its size distribution. Presently, more than 10 000 artificial debris particles with diameters larger than 10 cm (and more than 300 000 with diameters larger than 1 cm) are orbiting the Earth, and are monitored and studied by a large network of sensors around the Earth. Many objects of different kind compose the space debris population, produced by different source mechanisms ranging from high energy fragmentation of large spacecraft to slow diffusion of liquid metal. The impact against a space debris is a serious risk that every spacecraft must face now and it can be evaluated with ad-hoc algorithms. The long term evolution of the whole debris population is studied with computer models allowing the simulation of all the known source and sink mechanisms. One of these codes is described in this paper and the evolution of the debris environment over the next 100 years, under different traffic scenarios, is shown, pointing out the possible measures to mitigate the growth of the orbital debris population. .
Publisher
National Library of Serbia
Subject
Astronomy and Astrophysics