Modification of the structural and optical properties of commercial ZnO powder by mechanical activation

Author:

Scepanovic M.1,Sreckovic T.2,Vojisavljevic K.2,Ristic M.M.3

Affiliation:

1. Institute of Physics, Center for Solid State Physics and New Materials, Belgrade

2. Center for Multidisciplinary Studies of the Belgrade University, Belgrade

3. Serbian Academy of Sciences and Arts, Belgrade

Abstract

Mechanical activation was used as a method for modification of the structural and optical properties of commercial ZnO powder. For this purpose zinc oxide powder was mechanically treated by grinding in a high-energy vibro-mill in a continual regime in air up to 300 minutes. Starting and modified ZnO samples were characterized using XRD, BET and TEM measurements. Optical properties of these samples were investigated by Raman and photoluminescence (PL) spectroscopy. The color of commercial ZnO powder was white while mechanically activated ZnO powder was dark yellow, indicating the presence of nonstoichiometry. In the Raman spectra of non-activated sample Raman modes of bulk ZnO were observed, while the spectra of modified samples point out structural and stoichiometric changes. The PL spectra of modified samples excited by 325 and 442 nm lines of a He-Cd laser show great difference with respect to the spectra of the original sample. This study confirms that change in the defect structure of the ZnO crystal lattice introduced by mechanical activation affects the optical properties of this material.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3