Fast DCT algorithms for EEG data compression in embedded systems

Author:

Birvinskas Darius1,Jusas Vacius1,Martisius Ignas1,Damasevicius Robertas1

Affiliation:

1. Kaunas University of Technology, Software Engineering Department, Kaunas, Lithuania

Abstract

Electroencephalography (EEG) is widely used in clinical diagnosis, monitoring and Brain - Computer Interface systems. Usually EEG signals are recorded with several electrodes and transmitted through a communication channel for further processing. In order to decrease communication bandwidth and transmission time in portable or low cost devices, data compression is required. In this paper we consider the use of fast Discrete Cosine Transform (DCT) algorithms for lossy EEG data compression. Using this approach, the signal is partitioned into a set of 8 samples and each set is DCT-transformed. The least-significant transform coefficients are removed before transmission and are filled with zeros before an inverse transform. We conclude that this method can be used in real-time embedded systems, where low computational complexity and high speed is required.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Analysis-aware EEG Compression in Wearable Computing;2023 IEEE 19th International Conference on Body Sensor Networks (BSN);2023-10-09

2. A new lossless electroencephalogram compression technique for fog computing‐based IoHT networks;International Journal of Communication Systems;2023-07-16

3. Study of Energy-Efficient Biomedical Data Compression Methods in the Wireless Body Area Networks (WBANs) and Remote Healthcare Networks;International Journal of Wireless Information Networks;2023-07-10

4. Efficient compression technique for reducing transmitted EEG data without loss in IoMT networks based on fog computing;The Journal of Supercomputing;2023-01-07

5. A comprehensive review of electroencephalography data analytics;International Journal of Computer Applications in Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3