Efficient image compression and decompression algorithms for OCR systems

Author:

Arizanovic Boban1,Vuckovic Vladan1ORCID

Affiliation:

1. Faculty of Electronic Engineering, Computer Department, Niš

Abstract

This paper presents an efficient new image compression and decompression methods for document images, intended for usage in the pre-processing stage of an OCR system designed for needs of the ?Nikola Tesla Museum? in Belgrade. Proposed image compression methods exploit the Run-Length Encoding (RLE) algorithm and an algorithm based on document character contour extraction, while an iterative scanline fill algorithm is used for image decompression. Image compression and decompression methods are compared with JBIG2 and JPEG2000 image compression standards. Segmentation accuracy results for ground-truth documents are obtained in order to evaluate the proposed methods. Results show that the proposed methods outperform JBIG2 compression regarding the time complexity, providing up to 25 times lower processing time at the expense of worse compression ratio results, as well as JPEG2000 image compression standard, providing up to 4-fold improvement in compression ratio. Finally, time complexity results show that the presented methods are sufficiently fast for a real time character segmentation system.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3