Anti-Gaussian quadrature rule for trigonometric polynomials

Author:

Petrovic Nevena1ORCID,Stanic Marija1ORCID,Tomovic-Mladenovic Tatjana1ORCID

Affiliation:

1. University of Kragujevac, Faculty of Science, Department of Mathematics and Informatics, Kragujevac, Serbia

Abstract

In this paper, anti-Gaussian quadrature rules for trigonometric polynomials are introduced. Special attention is paid to an even weight function on [-?, ?). The main properties of such quadrature rules are proved and a numerical method for their construction is presented. That method is based on relations between nodes and weights of the quadrature rule for trigonometric polynomials and the quadrature rule for algebraic polynomials. Some numerical examples are included. Also, we compare our method with other available methods.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Mathematics

Reference29 articles.

1. H. Alqahtani, L. Reichel, Simplified anti-Gauss quadrature rules with applications in linear algebra, Numerical Algorithms 77 (2018) 577-602.

2. D. Calvetti, L. Reichel, Symmetric Gauss-Lobatto and modified anti-Gauss rules, BIT Numerical Mathematics 43 (2003) 541-554.

3. R. Cruz-Barroso, L. Darius, P. Gonzâles-Vera, O. Njastäd, Quadrature rules for periodic integrands. Bi-othogonality and paraorthogonality, Annales Mathematicae et Informaticae 32 (2005) 5-44.

4. A. S. Cvetković, M. P. Stanić, Trigonometric orthogonal systems, In: Approximation and Computation, Honor of Gradimir V. Milovanović, Series: Springer Optimization and its Applications 42, W. Gautschi, G. Mastroianni, Th. M. Rassias eds., Springer-Verlag, Berlin-Heidelberg-New York, ISBN 978-1-4419-6593-6, 103-116, 2011.

5. V. I. Devyatko, On a two-sided approximation for the numerical integration of ordinary differential equations, USSR Computational Mathematics and Mathematical Physics 3 (1963) 336-350.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3