Quarantine nematode species and pathotypes potentially dangerous for domestic potato production: populations diversity and the genetics of potato resistance

Author:

Mironenko N. V.1ORCID,Gavrilenko T. A.2ORCID,Khiutti A. V.3ORCID,Afanasenko O. S.3ORCID

Affiliation:

1. All-Russian Research Institute of Plant Protection, Pushkin; Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

2. Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

3. All-Russian Research Institute of Plant Protection; Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

Abstract

The review considers quarantine species and nematode pathotypes potentially dangerous for domestic potato production. Potatoes are affected by more than 30 types of parasitic nematodes, but the review focuses on the most harmful representatives of genera that cause great damage to potato production: Globodera, Ditylenchus, Nacob bus and Meloidogyne. Phytopathological and molecular methods of identification of species and pathotypes and the main achievements in studying the population variability of parasitic potato nematodes were analyzed. It was shown that due to the peculiarities of the life cycle of nematodes and lability of their genomes, the genetic variability of these organisms is very high, which creates a threat of forming new pathogenic genotypes of the parasites. The information about the intra- and interpopulation variability of nematodes is important for studying the ways of introduction and distribution of separate species, as well as for searching for the correlations of molecular markers with the pathotype. Phylogenetic studies based on modern data on genetic variability of populations have allowed to reveal species complexes in Globodera pallida (Stone) Behrens and Nacobbus aberrans (Thorne) Thorne & Allen (sensu lato), including cryptic species. The main components of successful protection preventing a wide distribution of parasitic nematodes are quarantine measures, agricultural techniques, biological methods of protection and cultivation of resistant cultivars. Special attention in the review is paid to the breeding of potato cultivars with durable resistance to various nematode pathotypes, because the cultivation of such varieties is the most ecologically safe and economically advantageous way to prevent epiphytoties. Currently, significant progress has been made in the genetic protection of potato cultivars, especially against cyst-forming nematodes. The review provides data on sources of potato resistance to parasitic nematodes identified in collections of wild and cultivated species. Data on identified R-gens and QTL of resistance that have been introduced into breeding varieties using different methods and approaches are analyzed. The literature data on the study of structural and functional organization of genes for resistance to potato cyst nematodes are given. The results of molecular research on revealing the polymorphisms of loci involved in the control of resistance to cyst and gall nematodes, the development of molecular markers of certain genes and their use in marker-assisted selection for developing of new resistant cultivars, including those with group resistance, are considered.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3