A software system for modeling evolution in a population of organisms with vision, interacting with each other in 3D simulator

Author:

Devyaterikov A. P.1,Palyanov A. Yu.2ORCID

Affiliation:

1. A.P. Ershov Institute of Informatics Systems of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

2. A.P. Ershov Institute of Informatics Systems of the Siberian Branch of the Russian Academy of Sciences

Abstract

Development of computer models imitating the work of the nervous systems of living organisms, taking into account their morphology and electrophysiology, is one of the important and promising branches of computational neurobiology. It is often sought to model not only the nervous system, but also the body, muscles, sensory systems, and a virtual three-dimensional physical environment in which the behavior of an organism can be observed and which provides its sensory systems with adequate data streams that change in response to the movement of the organism. For a system of hundreds or thousands of neurons, one can still hope to determine the necessary parameters and get the functioning of the nervous system more or less similar to that of a living organism – as, for example, in a recent work on the modeling of the Xenopus tadpole. However, of greatest interest, both practical and fundamental, are organisms that have vision, a more complex nervous system, and, accordingly, significantly more advanced cognitive abilities. Determining the structure and parameters of the nervous systems of such organisms is an extremely difficult task. Moreover, at the cellular level they change over time, these including changes under the influence of the streams of sensory signals they perceive and the life experience gained, including the consequences of their own actions under certain circumstances. Knowing the structure of the nervous system and the number of nerve cells forming it, at least approximately, one can try to optimize the initial parameters of the model through artificial evolution, during which virtual organisms will interact and survive, each under the control of its own version of the nervous system. In addition, in principle, the rules by which the brain changes during the life of the organism can also evolve. This work is devoted to the development of a neuroevolutionary simulator capable of performing simultaneous functioning of virtual organisms that have a visual system and are able to interact with each other. The amount of computational resources required for the operation of models of the physical body of an organism, the nervous system and the virtual environment was estimated, and the performance of the simulator on a modern desktop computing system was determined depending on the number of simultaneously simulated organisms.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating Natural Selection with Deep Learning and Genetic Algorithm;Proceedings of the 5th International Conference on Information Management & Machine Intelligence;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3