Stratifications and foliations in phase portraits of gene network models

Author:

Golubyatnikov V. P.1ORCID,Akinshin A. A.2,Ayupova N. B.1,Minushkina L. S.3

Affiliation:

1. Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

2. Huawei Russian Research Institute

3. Novosibirsk State University

Abstract

Periodic processes of gene network functioning are described with good precision by periodic trajectories (limit cycles) of multidimensional systems of kinetic-type differential equations. In the literature, such systems are often called dynamical, they are composed according to schemes of positive and negative feedback between components of these networks. The variables in these equations describe concentrations of these components as functions of time. In the preparation of numerical experiments with such mathematical models, it is useful to start with studies of qualitative behavior of ensembles of trajectories of the corresponding dynamical systems, in particular, to estimate the highest likelihood domain of the initial data, to solve inverse problems of parameter identification, to list the equilibrium points and their characteristics, to localize cycles in the phase portraits, to construct stratification of the phase portraits to subdomains with different qualities of trajectory behavior, etc. Such anà priorigeometric analysis of the dynamical systems is quite analogous to the basic section “Investigation of functions and plot of their graphs” of Calculus, where the methods of qualitative studies of shapes of curves determined by equations are exposed. In the present paper, we construct ensembles of trajectories in phase portraits of some dynamical systems. These ensembles are 2-dimensional surfaces invariant with respect to shifts along the trajectories. This is analogous to classical construction in analytic mechanics, i. e. the level surfaces of motion integrals (energy, kinetic moment, etc.). Such surfaces compose foliations in phase portraits of dynamical systems of Hamiltonian mechanics. In contrast with this classical mechanical case, the foliations considered in this paper have singularities: all their leaves have a non-empty intersection, they contain limit cycles on their boundaries. Description of the phase portraits of these systems at the level of their stratifications, and that of ensembles of trajectories allows one to construct more realistic gene network models on the basis of methods of statistical physics and the theory of stochastic differential equations.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3