Complex resistance of spring and winter bread wheat lines to biotic and abiotic stresses

Author:

Lapochkina I. F.1ORCID,Gainullin N. R.1ORCID,Baranova O. A.2ORCID,Kovalenko N. M.2ORCID,Marchenkova L. A.1ORCID,Pavlova O. V.1ORCID,Mitroshina O. V.1ORCID

Affiliation:

1. Federal Research Center “Nemchinovka”

2. All-Russian Institute of Plant Protection

Abstract

An original initial material of spring and winter bread wheat with group resistance to stem and leaf rust was developed using new donors of resistance to stem rust: winter soft wheat GT 96/90 (Bulgaria) and accession 119/4-06rw with genetic material of the species Triticum migushovae and (Aegilops speltoides and Secale cereale), respectively, a line of spring wheat 113/00i-4 obtained using the species Ae. triuncialis and T. kiharae, as well as spring accession 145/00i with genetic material of the species Ae. speltoides resistant to leaf rust. The transfer of effective Sr-genes to progeny was monitored using molecular markers. New lines underwent a field assessment of resistance to leaf and stem rust in the epiphytotic development of diseases in the Central Region of the Russian Federation, as well as in the North Caucasus and Western Siberia, and showed high resistance to these pathogens. Fourteen genotypes of spring wheat with group resistance to these diseases and parental forms that participated in the origin of the lines were evaluated for resistance to spot blotch (Cochliobolus sativus) and tan spot (Pyrenophora tritici-repentis) using isolates from Kazakhstan and Omsk in laboratory conditions. A highly resistant parental form of winter soft wheat from “Arsenal” collection 119/4-06rw (wheat-Ae. speltoides-rye hybrid 2n = 42) with group resistance to two spots, four medium-resistant genotypes to both isolates of tan spot from Kazakhstan and Omsk populations of the pathogen, as well as genotypes resistant to the Omsk isolate of P. triticirepentis (parental form 113/00i-4 and lines 1-16i, 6-16i, 9-16i) were isolated. Among the lines of winter wheat, four were identified with group resistance to spot blotch and tan spot. Additionally, the stress resistance of the lines to NaCl salinization and prolonged flooding of seeds with water was evaluated at the early stages of ontogenesis in laboratory conditions. Lines 33-16i, 37-16i, 32-16i and 9-16i showed a high ability to withstand excess moisture. Lines 33-16i, 37-16i, 32-16i and 3-16i were characterized by high salt tolerance, exceeding the average of 49.7 %. Among the winter genotypes, lines were identified with increased resistance to hypoxia (37-19w, 32-19w, 16-19w, 90-19w) and with increased salt tolerance (20-19w, 9-19w, 37-19w, 90-19w), significantly exceeding the standard cv. Moskovskaya 39. The listed lines are of interest as sources of resistance to anaerobic and salt stress, as well as donors of resistance to a group of fungal diseases: leaf and stem rust and tan spot. We attribute the increased level of resistance of the new initial material to the presence of alien translocations in the original parental forms involved in the origin of the lines.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3