Alloplasmic recombinant lines (H. vulgare)-T. aestivum with 1RS.1BL translocation: initial genotypes for production of common wheat varieties

Author:

Pershina L. A.,Belova L. I.,Trubacheeva N. V.,Osadсhaya T. S.,Shumny V. K.,Belan I. A.,Rosseeva L. P.,Nemchenko V. V.,Abakumov S. N.

Abstract

Alloplasmic lines are formed when the cytoplasm of one species is replaced by the cytoplasm of another as a result of repeated recurrent crosses of wide hybrids with the paternal genotype. Since the cytoplasm replacement results in new intergenomic interactions between a nucleus and cytoplasm leading to variability of plant characteristics, alloplasmic lines with restored fertility can be an additional source of biodiversity of cultivated plants. Earlier, recombinant alloplasmic lines (H. vulgare)-T. aestivumdesignated as L-17(1)–L-17(37) were formed from a plant with partially restored fertility of the BC3 generation of barley-wheat hybridH. vulgare(cv. Nepolegayushchii) ×T. aestivum(cv. Saratovskaya 29). This male-sterile hybrid was consistently backcrossed with wheat varieties Mironovskaya 808 (twice) and Saratovskaya 29, and Mironovskaya 808 had a positive impact on the restoration of fertility. This paper presents the results of investigation into a group of recombinant alloplasmic lines (L-17F4), as well as into doubled haploids (DH) lines – alloplasmic DH-17-lines obtained from anther culture of alloplasmic lines (L-17F2). The most productive of these lines were used as initial breeding genotypes. Hybrid form Lutescens 311/00-22 developed from the crossing of the alloplasmic DH(1)-17 line (as maternal genotype) with euplasmic line Com37 (CIMMYT), the source of the 1RS.1BL wheat-rye translocation, proved to be successful for breeding. The presence of the 1RS.1BL translocation in the genome of the Lutescens 311/00-22 form and the L-311(1)–L-311(6) alloplasmic lines isolated from it did not lead to a decrease of fertility or sterility in the plants. This indicates that the chromosome of the 1BS wheat does not carry the gene(s) that determine the restoration of fertility in the studied (H. vulgare)-T. aestivumalloplasmic lines. Alloplasmic lines L-311(1)–L-311(6) showed their advantage in comparison with the standard varieties for resistance to leaf and stem rust, yield, and grain quality. The breeding tests performed at Omsk Agricultural Scientific Center, Agrocomplex “Kurgansemena”, Federal State Unitary Enterprise “Ishimskoe” (Tyumen Region), using alloplasmic lines L-311(5), L-311(4) and L-311(6) resulted in varieties of spring common wheat Sigma, Uralosibirskaya 2 and Ishimskaya 11, respectively.              

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3