1. W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
2. H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, New York, 1969.
3. A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin, 1987.
4. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, Fla., 1992.
5. L. V. Ahlfors, “Complex analysis” in An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd ed., McGraw-Hill, New York, 1978.